注册 登录  
 加关注
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

大地还在我的脚下

.

 
 
 

日志

 
 

[原创]天文望远镜集锦  

2012-03-14 18:16:45|  分类: 天文爱好者 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |

       远镜是现代天文学探索的重要工具,人眼的瞳孔只有6毫米,正常人眼看得见的最低标准是每秒钟约有140个光子进入瞳孔。人眼最敏感的波长是550纳米的黄绿色可见光。按此波长计算,140个光子携带的能量是5×10^-17瓦。所以人眼不能看到比6.5等更暗的星。此外,人眼接受光子产生的视觉响应只有1/24秒,光子不能连续累积。天文望远镜弥补了人眼的这些不足。让人“看得见”的本领大大增强。一台口径2.16米的光学望远镜能看到22.5等星。此外,由于光有粒二象性,它有衍射现象。人眼的瞳孔小,衍射效应明显,人眼的分辨率只有23",而2.16米口径的望远镜的分辨率可达0.06"。所以望远镜不但让人“看得见”遥远的星星,而且还要“看得清”。

1611年,德国天文学家开普勒用两片双凸透镜分别作为物镜和目镜,使放大倍数有了明显的提高,以后人们将这种光学系统
称为开普勒式望远镜。现在人们用的折射式望远镜还是这两种形式,天文望远镜是采用开普勒式。
伽利略的望远镜 :
  天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下

 伽利略的望远镜    :这是1609年伽利略亲手制作的第一台天文望远镜,口径4.4厘米,折射式。放大倍数约10倍,现藏于意大利佛罗伦萨博物馆。
1609年,伽利略独立发明出望远镜,并首先用于天文学观测。不过许多学者认为,早在伽利略之前,望远镜就已经被发明了。很多科技史学家认为,英国数学家伦纳德?迪格斯是望远镜发明权最有力的竞争者。据说其子数学家托玛斯?迪格斯留下了一份详细的望远镜使用说明,有学者认为,这说明伦纳德?迪格斯生前就已发明了望远镜。
更有学者认为,早在古罗马时期就有了望远镜,凯撒大帝籍此指挥罗马军队战无不胜。英国学者罗伯特?坦普尔坚信望远镜古已有之。他认为,雅典卫城博物馆收藏了多个古代水晶透镜,这是构成望远镜的最原始的材料。


牛顿的望远镜

天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下

 牛顿的望远镜由牛顿发明,又被称为反射式望远镜,1667年牛顿制造的人类第一架反射式望远镜,口径3.3厘米,焦距16厘米。虽然它的成像效果并不是最好的,但它最大的优点就是能做的很大,目前世界上所有的巨型望远镜几乎都是由此发展而来的。



廉·赫歇尔的望远镜

天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下

 威廉·赫歇尔自制的发现天王星的望远镜,口径15厘米,焦距2.1米,放大40倍左右的牛顿式反射望远镜。

天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下威廉·赫歇尔制造的另一个望远镜   口径:48cm,牛顿反射式
天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下
 威廉·赫歇尔制造的当时世界上最大的望远镜 英王乔治三世慷慨解囊,拿出2000英镑资助他。这是一项令世人震惊的工程,所招聘的工人多达40名。1789年,赫歇尔的得意之作在巨大的构架中竖立起来,看上去活像一尊指向天空的“大炮”。口径1.22米,镜筒长达12米的大型金属反射望远镜。赫歇尔反射式。大炮”十分笨重,很难使用。在赫歇尔的有生之年里,他一直在使用一架直径45厘米、长6米的反射望远镜,天王星的两颗卫星,就是用这架望远镜发现的,而那架1.22米直径、12.2米长的庞然大物则成为了一个旅游景点。威廉·赫歇尔共制作过400多架望远镜,其中最大最著名的是这台反射望远镜。


英国口径1.8米的罗斯伯爵大望远镜“列维亚森”
天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下大英帝国属爱尔兰天文学家罗斯伯爵大望远镜“列维亚森”1845制造的罗斯伯爵大望远镜“列维亚森”口径72英寸(1.8米)望远镜。光底盘都有四吨重,整个机器约有16吨。耗资约达三万英镑。因为在爱尔兰他家的地产上天气条件极差,以至很少有使用这架笨重仪器之可能。(要四个人才能操纵它。)即使如此,罗斯爵士还是能做出一些重要的观测。这台望远镜在建成后长达70年的时间里是当时世界上最大的望远镜。(直到1917年,世界上才有了更大的100英寸的望远镜,被安装在威尔逊山天文台。)1908年,他的一个孙子卸下了这架巨大的望远镜,它已经变得摇摇晃晃十分危险了。


2.5米的美国胡克望远镜
天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下坐落于洛杉矶市外威尔逊山天文台100英寸(2.5米)的胡克望远镜。 在富商约翰-胡克的赞助下,口径为100英寸的反射望远镜于1917年在威尔逊山天文台建成。在此后的30年间,它一直是世界上最大的望远镜。为了提供平稳的运行,这架望远镜的液压系统中使用液态的水银。1919年阿尔伯特-迈克尔逊为这架望远镜装了一个特殊装置:一架干涉仪,这是光学干涉装置首次在天文学上得到应用。迈克尔逊可以用这台仪器精确地测量恒星的大小和距离。亨利-诺里斯-罗素使用胡克望远镜的数据制定了他对恒星的分类正是使用这座望远镜,天文学家埃德温·哈勃曾利用它收集到遥远星系光谱的红移,支持了宇宙膨胀的理论,从而推翻了当时普遍认为的宇宙不变的观点。 1986年胡克望远镜停用,1992年安装了自适应光学系统后又开始运用。在此后数年中,胡克望远镜又成为世界上分辨率最高的望远镜。今天这个地位虽然被其他望远镜取代,但它仍然是20世纪最重要的科学仪器之一。

102厘米美国叶凯士折射望远镜
天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下
天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下
天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下
 102厘米叶凯士折射望远镜
1897年,美国叶凯士天文台叶凯士折射望远镜口径102厘米(40英吋)长逾18米相当于6层楼的高度,望远镜整体则重达18吨。望远镜由光学大师克拉克(Alvan Clark)建造,与天文台一起落成启用。由于折射望远镜对玻璃材料要求非常高,因此,折射望远镜的发展达到了顶点,此后的这一百年中再也没有更大的折射望远镜出现。尽管它比胡克望远镜看得更远,分辨能力更强,但它并没有使人类对宇宙的有更新的认识。正如阿西摩夫所说:“海耳望远镜就像半个世纪以前的叶凯士望远镜一样,似乎预兆着一种特定类型的望远镜已经快发展到它的尽头了”。在1976年苏联建造了一架600厘米的望远镜,但它发挥的作用还不如海耳望远镜,这也印证了阿西摩夫所说的话。 世界上现有的8架70厘米以上的折射望远镜有7架是在1885年到1897年期间建成的


 世界上最大的折射望远镜德国陶登堡天文台1.35米施密特望远镜
天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下
  世界上最大的折射望远镜,德国陶登堡天文台安装的施密特望远镜,改正口径1.35米,主镜口径2米。德国这台折射镜也超过了美国最大的叶凯士施米特望远镜


美国利克天文台口径3米的 唐纳德·沙恩望远镜
天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下
 唐纳德·沙恩望远镜,口径为3米(120英寸)的反射式望远镜,位于美国加利福尼亚州圣荷西市的东部,汉密尔顿山的山顶上,海拔4200,米的利克天文台(Lick Observatory),1959年安装的唐纳德·沙恩望远镜,是利用了已经在康宁浇注的为制作海尔望远镜最终成型而准备的一块圆盘状玻璃做成的。1979年此望远镜命名为沙恩是为了纪念美国天文学家、利克天文台的董事唐纳德·沙恩,这台望远镜最著名的就是最早安装了自适应光学和激光导星系统望远镜之一。自适应光学(Adaptive optics,缩写为AO)是一项使用可变形镜面矫正因大气抖动造成光波波前发生畸变,从而改进光学系统性能的技术。自适应光学的概念和原理最早是在1953年由海尔天文台的胡瑞斯·拜勃库克(Horace Babcock)提出的,但是超越了当时的技术水平所能达到的极限,只有美国军方在星球大战计划中秘密研发这项技术。冷战结束后,1991年5月,美国军方将自适应光学的研究资料解密,计算机和光学技术也足够发达,自适应光学技术才得以广泛应用。配备自适应光学系统的望远镜能够克服大气抖动对成像带来的影响,将空间分辨率显著提高大约一个数量级,达到或接近其理论上的衍射极限。第一台安装自适应光学系统的大型天文望远镜是欧洲南方天文台在智利建造的3.6米口径的新技术望远镜。目前越来越多的大型地面光学/红外望远镜都安装了这一系统,比如位于夏威夷莫纳克亚山的8米口径双子望远镜、3.6米口径的加拿大-法国-夏威夷望远镜、10米口径的凯克望远镜、8米口径的日本昴星团望远镜等等。自适应光学已经逐步成为各大天文台所广泛使用的技术,并为下一代更大口径的望远镜的建造开辟了道路。


加拿大-法国-夏威夷望远镜(CHFT,口径3.58米)
天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下
  加拿大-法国-夏威夷望远镜(CFHT)座落在夏威夷毛纳基峰最高峰(4,205米)的附近,口径3.58米,主焦点是卡塞格林的结构。CFHT外挂了三件仪器。望远镜完成年代:1979年,在绝佳的视宁度下成为世界解像力最佳的天文望远镜,因此被称为地面上的太空望远镜。
  • MegaPrime:由36个340百万画素组合成的广角的高分辨率CCD。
  • 广角红外线相机(WIR Cam):由台湾和韩国制造,以4个红外线检测器组成的16百万画素摄影机。
  • EspaDOnS:一个新的摄谱仪/ spectropolarimeter梯形阵列。另外还有三件仪器可供选用:PUEO:一个自适应光学平台。Gecko:一架分辨率很高的摄谱仪。MOS:多目标摄谱仪。 


  • 澳洲3.9米英澳望远镜(Anglo-Australian Telescope,AAT)

天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下

  英澳望远镜(Anglo-Australian Telescope,AAT)是座落于澳洲1,100米高的山区,架设在赛丁泉天文台内,由英澳天文台操作的一架口径3.9米,架台为赤道仪式的望远镜。它是由英国澳洲共同出资建造的,为全球的天文学家提供可观测的时间。它装备了大量的工具,包括两度视场设备(2df),可以在2°的视场内选择400个观测的天体,同时进行光谱观测的机器人光纤定位器;伦敦大学的?chelle光谱仪(UCLES),一个高解析的光谱仪,曾经用他发现了许多的太阳系外行星;还有IRIS2,一个广角的红外线照相机和光谱仪。在1970年代,当主要的望远镜仍多位于北半球时,它于1974年就对南半球的天空展开了高品质的观测。AAT是最后一架采用赤道仪架台的大望远镜,之后新建的大望远镜都采用更紧密和机械上更稳定的经纬仪架台。但是AAT是第一架全部采用电脑控制的望远镜,在指向性与追踪精度上都建立了新的标准。在2000年的大众机械杂志上的文章指出,由九个在英国和美国的机构联合操作下,AAT发现了三颗新的行星。



 美国基特峰国立天文台的4米梅耶尔望远镜

天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下
 梅耶尔望远镜Mayall Telescope)是位于美国亚利桑那州基特峰国立天文台的一架4米口径光学望远镜,是基特峰上口径最大的一台望远镜。该望远镜建成于1973年2月27日,耗资1,000万美元。在同年6月20日举行的望远镜命名典礼上,美国国家科学基金会的会长宣布这台望远镜以曾在1960-1970年期间担任基特峰国立天文台台长的尼可拉斯·梅耶尔Nicholas Mayall)博士的名字命名。


美国4.3米的探索频道望远镜
天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下
  探索频道望远镜Discovery Channel Telescope,DCT)是一座口径4.3米的望远镜[2],由位于美国亚利桑那州旗杆市罗威尔天文台探索频道合造。该望远镜位于靠近快乐杰克森林保护区可可尼诺国家森林区域内[3]。望远镜址的海拔2360米,位于旗杆市南南东方约65公里处。该计划是由罗威尔天文台和探索传播合作进行。在计划初期该望远镜耗资约5300万美金。探索频道望远镜将显著提升罗威尔天文台的观测能力,以及在一些重要的领域中进行开创性研究。探索频道望远镜的建设完成于2012年2月,并在同年4月开光。
罗威尔天文台和探索传播于2003年2月建立伙伴关系以建造探索频道望远镜。2004年11月该计划收到了来自美国林务署核发的位于望远镜现址的特殊许可证,并立即展开了该地现有道路改善工程。主镜的镜胚于2005年下半年在康宁公司制成。高26米、直径19米的望远镜圆顶和附属支撑设备工程于2005年9月中开始建造。望远镜主镜的磨制与抛光则是由亚利桑那大学光学学院完成,最后重量3000公斤,耗时3年。主镜于2010年6月送到望远镜址后镀上一层铝,于2011年8月装上望远镜。探索频道望远镜于2012年完成并开光。它的口径预期是4.2米,但原来可用的口径是4.3米。


世界第三大单镜面的英国4.2米镜威廉·赫歇尔望远镜(WHT)
天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下
天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下威廉·赫歇尔望远镜(WHT)是世界第三大单镜面望远镜,(第一大的就前苏联的口径6米的经纬台式大型望远镜,第二个就是美国的5米口径的海耳望远镜)。这台望远镜于1987年7月完成。在设计,建造和生产的WHT的 ??预算,控制系统,穹顶,建筑,铝罐和其他植物,和全套的仪器约15亿美元(1984年10月价格计算)。
威廉·赫歇尔望远镜,是其在欧洲的最大的光学望远镜,主镜直径为4.2米。它国家的最先进的仪器,坐落在有精湛的天空质量的西班牙拉帕尔玛岛罗奎克·德·罗斯·穆察克斯天文台。威廉·赫歇尔望远镜是一种通用设备,仪表允许大范围的天文观测,从光学波长的红外线,并覆盖成像和光谱通过不断的发展仪器仪表,特别是在自适应光学领域,威廉·赫歇尔望远镜保持在天文研究的最前沿。
      威廉·赫歇耳望远镜的构想开始于1960年代末期,当英澳望远镜开始设计之时,英国的天文社会认为北半球也须要有相同威力的望远镜。计划开始于1974年,但是因为预算快速的增加,在1979年时已经濒临被废气的边缘。从新设计在实质上去除了价格的包袱,加上荷兰投资了20%的资金,使计划在1981年得以继续进行,这一年也是威廉·赫歇耳发现天王星的200周年,因此这架望远镜被命名为威廉赫歇尔望远镜,以示尊荣。这架望远镜属于牛顿望远镜集团之一。牛顿望远镜集主要是:4.2米镜威廉·赫歇尔望远镜(WHT)、2.5米的艾萨克·牛顿望远镜,还有个一米口径的雅各布-卡普坦望远镜。
天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下
2.5米的艾萨克·牛顿望远镜(2000年以前该望远镜喷涂的是黄色油漆,2001年后就改成白色的了)
天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下~~2.5米的艾萨克·牛顿望远镜
天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下~~1米的雅各布斯卡普坦望远镜
美国5米海耳巨型反射望远镜
天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下
天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下
      帕洛马山天文台, 口径为200英寸(5米)的海耳巨型反射望远镜。海耳望远镜坐落在帕洛马山上,自洛杉矶向南3个小时车程。这台望远镜同样是乔治·埃勒理·海耳主持建造的,可惜他没能等到望远镜建成的那一天。望远镜的建造耗时20年,直到1949年才第一次投入使用。要浇制一块如此巨大、绝无任何瑕疵的光学玻璃就是一大难题。光是浇制后让它在巨型炉内恒温冷却就花费了10个月,然后是长达8个月的热处理,进一步的精细加工更是耗去了7个春秋,被磨去的玻璃屑重达4.5吨!在1993年10米的凯克望远镜建成之前,海耳望远镜一直是世界上分辨能力最强的望远镜。在恒星起源等重要谜题上,这架望远镜发挥着重要作用。


美国口径10米级凯克望远镜
天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下凯克
天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下
凯克望远镜由36个直径为1.8米的六边形小镜片组成
天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下
 口径10米的凯克望远镜  凯克天文台位于美国夏威夷州的莫纳克亚山4145米的顶峰,拥有世界上口径最大的光学/近红外线望远镜——凯克望远镜。凯克望远镜由两台相同的望远镜组成,每台口径都是10米,由36片口径1.8米的六角形镜片组合而成。 由一个叫凯特的商人赞助,1991年做好的凯特一大概花了9000万美元,1996年建成的凯特二花了7000万美元
由于当今技术不可能实现单片望远镜镜面口径超过8.4米,因此凯克望远镜的镜面由36块六边形分片组合而成。凯内望远镜巨大的镜面使它使用起来非同一般,不只是因为它的大尺寸,还因为它是由36个直径为1.8米的六边形小镜片组成的。凯克望远镜开创了基于地面的望远镜的新时代。它的规模是美国加利富尼亚州帕落马山上的海耳望远镜的两倍,后者在前几十年内是世界上最大的望远镜。  每架凯克望远镜的架台都是经纬仪的设计,大量的计算机分析得以使用最少的钢材获得最大的强度,每架望远镜的重量约为270吨。在望远镜上的每个接合处,都由非常强固的钢架结构支撑,并由可翘曲的鞔具系统保持稳定。望远镜安装有主动光学系统,在观测时,联结在电脑的传感器和控制系统,能调整每一片镜片和相邻镜片的位置偏差达到4毫米的准确性。每秒两次的调整可以有效的矫正来自重力所造成的变形。

  每架凯克望远镜都装有自适应光学系统,能够补偿大气抖动的影响。另外,凯克Ⅰ和凯克Ⅱ还可以做为凯克干涉仪;相隔85米的距离,使它们联合作业时在特定方向上的解析力相当于口径85米的单一望远镜,比得上其他天文干涉仪的解析力,像是距离200米远,但没有干涉测量图能力的VLTI。 凯克天文台由为研究天文而成立的加利福尼亚协会管理,理事来自加州大学和加州理工学院的非营利组织。在1996年,美国国家航空航天局加入成为天文台的一个伙伴。望远镜的基地是由总部设在檀香山的夏威夷大学向当地土著承租的。私人的W. M. 凯克基金会赞助了一亿四千万美金建造望远镜。凯克天文台的总部设在夏威夷的卡姆艾拉(Kamuela),望远镜的使用时间由工作伙伴共同分享。加州理工学院、夏威夷大学和加州大学受理自家研究员的提案,美国国家航空航天局则接受来自全美国各地研究人员的企画案,美国国家光学天文台(NOAO)受理来自世界的研究人员的提案。

  2001年3月12日,两架凯克望远镜开始用于光干涉观测,成功观测了位于天猫座的恒星HD61294,其等效分辨率相当于一台口径85米的望远镜。



美国第一架多镜面望远镜Multiple Mirror Telescope,缩写为MMT

天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下

 

1971年美国开始研制第一架多镜面望远镜(MMT),是史密松森研究所亚利桑那大学共同建造的一台口径为6.5米的光学望远镜,位于美国亚利桑那州图森市以南60公里的霍普金斯山的山顶1979年运转,主要用作天体的红外辐射观测。这架望远镜由六个口径各为 1.8米的卡塞格林望远镜组成。六个望远镜绕中心轴排成六角形,六束会聚光各经一块平面镜射向一个六面光束合成器,后者把六束光聚在一个共同焦点上。组合后的口径相当于 4.5米。光轴上有76厘米卡塞格林望远镜。它除用于导星外,主要用来发出检测六个镜筒的光学系统的激光。每个镜筒内的副镜可受控而作微小的转动和伸缩,以校正被激光及其硅检测器检出的失调量。这种能随时对光束进行校正的光学技术称为“主动光学”。六个镜筒的星像既可以互相重合,也可以沿恒星摄谱仪狭缝排成一行以提高星光的利用率。VLT采用了更为先进的光学干涉技术,组成它的4个8.2米单镜既能单独使用,又能组合起来,达到一个16米口镜望远镜的集光力和分辨力。


美国斯隆2.5米数字化巡天望远镜

天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下 斯隆望远镜 
天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下
 斯隆2.5米数字化巡天望远镜  英语Sloan Digital Sky Survey,缩写为SDSS “斯隆数字天空勘测计划”的2.5米望远镜位于美国新墨西哥州阿柏角天文台。进行的红移巡天项目。该项目开始于2000年,以阿尔弗雷德·斯隆的名字命名,计划观测25%的天空,获取超过一百万个天体的多色测光资料和光谱数据。斯隆数字化巡天的星系样本以红移0.1为中值,对于红星系的红移值达到0.4,对于类星体红移值则达到5,并且希望探测到红移值大于6的类星体。

2006年,斯隆数字化巡天进入了名为SDSS-II的新阶段,进一步探索银河系的结构和组成,而斯隆超新星巡天计划搜寻Ⅰa型超新星爆发,以测量宇宙学尺度上的距离。 2008年10月31日,SDSS-II发布了最后一次数据。

斯隆数字化巡天第三期工程SDSS-III已经于2008年7月启动,将持续至2014年。

该望远镜拥有一个相当复杂的数字相机,望远镜内部是30个电荷耦合器件 (CCD)探测器。斯隆望远镜使用口径为2.5米的宽视场望远镜,测光系统配以分别位于u、g、r、i、z波段的五个滤镜对天体进行拍摄。这些照片经过处理之后生成天体的列表,包含被观测天体的各种参数,比如它们是点状的还是延展的,如果是后者,则该天体有可能是一个星系,以及它们在CCD上的亮度,这与其在不同波段的星等有关。另外,天文学家们还选出一些目标来进行光谱观测。


日本8.2米昴星团望远镜
天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下
1991年,日本国家天文台在美国夏威夷莫纳克亚山开始建造昴星团望远镜(Subaru)。昴星团望远镜的口径为8.2米的望远镜,昴星团望远镜有三个特点:一是镜面薄,通过主动光学和自适应光学获得较高的成像质量;二是可实现0.1″的高精度跟踪;三是采用圆柱形观测室,自动控制通风和空气过滤器,使热湍流的排除达到最佳条件。它于1999年1月正式开始进行科学观测昴星团望远镜是一台位于美国夏威夷毛纳基山天文台的口径为8.2米的望远镜,隶属于日本国家天文台,是该组织最大的望远镜设备。该望远镜以著名的疏散星团——昴宿星团命名,于1991年4月开始建造,1999年1月正式开始进行科学观测。 高:22.2米 重量:555公吨。直径:8.2米(世界最大单一主镜)厚度:20厘米。镜子重量:重量:22.8公吨,材质:ULE(低膨张型玻璃,焦距:15米,焦点(有四个观测焦点)主焦点:F 2.0(装有集光器).


欧洲口径4.1米的VISTA可见光和红外巡天望远镜
天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下
 VISTA(可见光和红外巡天望远镜)是一个主镜口径4.1米焦长12.1米,副镜口径1.24米,位于帕拉纳尔天文台智利 阿塔卡马沙漠。它是由欧洲南方天文台的运作,2009年12月11日。Vista是望远镜在红外波段工作的一项调查,是迄今为止最大的红外观测望远镜,专门测量在0.85——2.3微米红外波段。望远镜只有一台仪器:VIRCAM,Vista的红外相机。这是一个3吨重的相机,包含16对红外光敏感的特殊探测器,相当于67万像素的数码相机。观测波长长于人眼可见的。使用Vista的数据,天文学家将能够创造出一个约5%,整个观测宇宙的三维地图。Vista将是一个发现远程类星体和星系和星系团的演化研究的有力工具这将有助于找到非常遥远的星系团探测暗能量的性质。


欧洲南方天文台甚大望远镜(VLT)
天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下
 2001設在智利拉塞雷纳附近的歐洲南方天文臺研制完成了“超大望遠鏡”(VLT),它由4架口徑8米的望遠鏡組成,其聚光能力與一架16米的反射望遠鏡相當。欧洲南方天文台自1986年开始研制。这4台8米望远镜排列在一条直线上,它们均为RC光学系统,焦比是F/2,采用地平装置,主镜采用主动光学系统支撑,指向精度为1″,跟踪精度为0.05″,镜筒重量为100吨,叉臂重量不到120吨。这4台望远镜可以组成一个干涉阵,做两两干涉观测,也可以单独使用每一台望远镜。 坐落于智利塞罗-帕拉纳山上,它们可以单独操作,或者形成一个甚大望远镜干涉仪。甚大望远镜所装配的仪器可提供详细的观测资料,捕捉十亿分之一秒的星体运动变化。这种联合式天文学观测能探测到比人体肉眼可见光暗40亿倍的宇宙光线。


  西班牙10.4米的加那利大型望远镜”(GTC)
天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下
天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下
天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下
 
西班牙的望远世界上最大单体光学红外望远镜于7月13日开始投入使用。它有助于人类在外太空搜寻类似地球的行星,并为解释生命起源提供线索。GTC主镜于2009年4月完成制造。2009年7月31日正式落成
 据英国《卫报》13日报道,这部望远镜名为“加那利大型望远镜”,位于大西洋加那利群岛的拉帕尔马岛上,最高点——罗奎克·德·罗斯·穆察克斯(Roque de los Muchachos)之上,海拔高度达到7874英尺(约合2400米)。拉帕尔马岛位于加那利群岛最西北角。GTC所在地区几乎没有光污染,天空经常处于无云状态,大气层也较为稀薄,是进行光学和红外线天文学研究的理想之所。主镜由36块更小的六角形镜片构成,拼接在一起好似一个蜂巢。之所以采用这种结构的原因在于:如果只采用一个直径34英尺的反射镜,镜面会因自身重量过高而出现变形。变形导致来自遥远物体的光线发生偏斜,致使最终得出的数据成为“垃圾”。而小镜面则可进行认真校准,能够成为一个无缝光线收集器。除了解决主镜重量这个问题外,多镜片拼接结构也允许GTC采用一项相对较新的观测技术,也就是所说的自适应光学技术。36块小镜片中的每一块都可以移动,能够在一秒钟之内进行上千次非常细微的调整,以校正地球大气层对遥远物体发出光线产生的模糊效应。这项技术以及主镜的巨大尺寸允许GTC发现距地球数百万光年的黑洞和星系,并进行细节达到空前程度的观测报道说,这部望远镜耗资1.3亿欧元(约合1.76亿美元),耗时7年修建。它结构复杂,由36面镜子组成,直径为10.4米,比位于夏威夷冒纳凯阿火山顶的“凯克”望远镜还大4%。它的目镜可以穿透“分子云”,观察恒星诞生过程,并能找到遥远的星系和类星体。
 科学家认为,了解我们这个世界的线索就藏在宇宙尚未看到的部分里,而这部望远镜能有效地捕捉到许久以前在宇宙其他地方发射出的光芒。
 这部望远镜的所有者包括西班牙政府和加那利群岛地方政府。代表所有者的一名发言人说,“加那利大型望远镜”可以观测到宇宙中光芒弱、距离远的天体。它可以捕捉新恒星的诞生,更深入地研究黑洞特征,解析宇宙大爆炸后出现的化合物。它的一项主要目标就是,在其他恒星系中找到与地球相似的行星。


 美国口径为9.2米霍比-埃伯利望远镜(Hobby-Eberly Telescope,缩写为HET)
天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下
  霍比-埃伯利望远镜(Hobby-Eberly Telescope,缩写为HET)位于美国得克萨斯州的麦克唐纳天文台,口径为9.2米,是为光谱研究而设计的固定机架球面望远镜。霍比-埃伯利望远镜主镜为11米乘12米的八边形球面,等效口径9.2米,焦距13.08米,集光面积77.6平方米,由91块八边形的子镜面拼接而成,每个子镜面直径1米,厚5厘米,用零膨胀微晶玻璃制成。

  望远镜机械结构与地面的夹角是55度,观测过程中主镜固定不动,通过移动安装焦平面上的终端设备对天体进行跟踪。望远镜的主焦点进行成像和低分辨率光谱观测,用光纤将光引导至望远镜下面的中高分辨率光谱仪上。跟踪视场12度,可观测的天空范围是赤纬-10度20分到+70度40分,最长跟踪时间从45分钟到2.5小时不等。为校正主镜重力造成的形变,望远镜安装有主动支撑系统,镜面下方有273个促动器上,每个子镜面下装有3个。望远镜圆顶直径25.8米,高30.34米,圆顶南方有一个高度为27.3米的塔形建筑物,用于调整主镜的曲率中心。

  霍比-埃伯利望远镜是美国的德州大学奥斯汀分校、宾夕法尼亚州立大学、斯坦福大学、德国的慕尼黑大学、格丁根大学联合研制的,由麦克唐纳天文台管理和操作,主体部分造价是1350万美元。于1996年建成并投入使用,位于得克萨斯州的福尔基斯山,海拔2026米。由于该望远镜具有极高的性价比,南非仿造了一台口径9.1米的望远镜,称为南非大望远镜安装在南非苏热尔兰德的南非天文台。



南非仿造的霍比-埃伯利望远镜非洲南部大型望远镜(Southern African Large Telescope),SALT

天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下
天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下
 非洲南部大型望远镜(Southern African Large Telescope),简称为SALT。位于非洲南部的一个小山顶上,它是南半球最大的单光学望远镜。其结构基本与霍比-埃伯利望远镜相同。该望远镜于2005年11月10日,在南非开普敦东北约350公里的荒漠小镇萨瑟兰,南半球最大的天文望远镜——“南部非洲大望远镜”正式启用。来自南非、美国、德国、波兰、英国和新西兰等国家的天文学家均使用过非洲南部大型望远镜。



30米口徑“加利福尼亞極大望遠鏡”(或The Thirty Metre Telescope (TMT)
天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下
天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下
 30米口径的“加利福尼亚极大望远镜”(California Extremely Large Telescope简称(CELT)  美国加利福尼亚理工学院、加利福尼亚大学和加拿大大学天文学会计划制造一台30米口径的大望远镜可能在2012年使用。三十米口径望远镜隶属于加州理工学院、加州大学以及加拿大大学研究天文协会。工程正在选址中,建在智利或夏威夷莫纳克亚火山山顶都是可能的地点。
顾名思义,该望远镜的主镜直径将达到史无前例的30米!如此巨大的镜面当然只有采用在凯克望远镜上已经取得成功的方法——整个主镜将有492块小镜片组合而成,每个小镜片都能够随时变换形状和位置。三十米口镜望远镜的科学家们希望通过它看到早期宇宙的景象,以弄清恒星和星系真正的形成机制。
即使三十米口镜望远镜获得稳定投资并完成建设而成为世界上最大的望远镜,这个桂冠估计也不能保持很久。因为提议中的欧洲极大望远镜(EELT)预计拥有42米口镜,并且紧随三十米望远镜之后就将开始建设。EELT实际上已经最初设计的微缩版,当初欧洲空间局提议建造一个100米口镜的空前绝后大望远镜( Europe Overwhelmingly Large Telescope)版权:
TMT官方网站



位于智利的 美国麦哲伦2 ×6.5米望远镜

天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下
 麦哲伦望远镜(Magellan Telescopes)是位于智利拉斯坎帕纳斯天文台的2台6.5米口径光学望远镜,是华盛顿卡内基研究所天文台(OCIW)与美国亚利桑那大学、哈佛大学、密歇根大学、麻省理工学院合作建造的,由华盛顿卡内基研究所天文台负责管理运行。其中第一台望远镜以美国天文学家沃尔特·巴德的名字命名,第二台以慈善家兰顿·克莱的名字命名。麦哲伦望远镜是目前最新建造的双体望远镜,两个望远镜相隔200英尺,坐落于智利阿塔卡马沙漠的高处。望远镜的6.5米直径镜面漂浮在高压油薄膜上,其摩擦力很小,小孩便能够推动这个150吨的望远镜。但是没有天文学家想让镜面滑动,因此驱动汽缸和驱动平面可形成1万磅的压力,使镜面保持平稳。 
麦哲伦望远镜计划始于1980年代中期,1993年华盛顿卡内基研究所与亚利桑那大学开始建造第一块主镜。1995年12月哈佛大学的加入和1996年2月密歇根大学、麻省理工学院的加入使得该计划有能力建造第二台望远镜。1999年11月,第一台望远镜的主镜从亚利桑那大学史都天文台镜面实验室运抵拉斯坎帕纳斯天文台,2000年9月15日开始观测,同年12月9日正式开始运行。第二台望远镜的主镜于2001年7月运抵目的地,2002年9月7日开始观测


20米口徑的大麥哲倫望遠鏡(Giant Magellan Telescope,簡稱GMT)
天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下
天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下
 正在打磨的大麦哲伦望远镜8.4米的镜片
美国亚利桑那州立大学的“史都华天文台镜子实验室”正在忙着为世界上直径最大的“巨型麦哲伦天文望远镜”赶制第一面直径为8.4米的主观测镜片。将于2016年在位于智利拉斯卡姆帕纳斯地区的卡内基天文台建成并投入使用的“巨型麦哲伦天文望远镜”的主观测镜片,将由7个直径均为8.4米的大型子镜片组成。1个居中,另外6个则环绕在其周围。6个环绕在四周的镜片能够观察到中心镜片不能观察到的任何角度的光线。因此,这种设计令这台望远镜的聚光能力相当于一面直径为25.6米的巨型望远镜,功能是当前最大光学望远镜的4.5倍,成像清晰度将达到“哈勃”太空望远镜的10倍。 研究人员称,“巨型麦哲伦天文望远镜”刷新纪录,成为单一镜片望远镜中直径最大的望远镜,并将镜片的制造技术提升至一个新的境界。之前单一镜片望远镜直径最大的是新皇望远镜(Subaru),其直径超过8米。为了顺利建造这台巨型望远镜,美国的加州卡内基天文台、哈佛大学、史密松天文物理台、亚利桑那州立大学、密歇根州立大学、麻省理工学院、得克萨斯州立大学和得克萨斯农工大学组成了一个联盟。据了解,“巨型麦哲伦天文望远镜”投入使用后,将担负探寻宇宙中恒星和行星系的生成、暗物质、暗能量和黑洞的奥秘,以及银河系的起源等重任 。在建中巨型麦哲伦望远镜的不远处就是早已建成的欧洲甚大望远镜(EVLT),而它的双胞胎兄弟2000年建成的6.5米口镜的麦哲伦望远镜也将和它成为邻居。
版权:
GMT官方网站


大型双筒望远镜(LBT)2005年投入使用
天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下
 美国亚利桑那州的格拉汉姆山顶之上的大型双筒望远镜
天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下
 LBT 蜂巢形的第一塊基本主鏡
天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下
 LBT的第一張影像是NGC891,這個星系位於仙女座,是一個邊緣看過去的螺旋形星系,屬於Sb型。這個星系距離我們2千4百萬光年遠。這個星系中,新的恆星誕生與X射線的發射源混合著氣體及塵埃盤,與其側看的圖像垂直達數百光年。
大双筒望远镜(Large Binocular Telescope,缩写为LBT)位于美国亚利桑那州的格拉汉姆山国际天文台,是两台架设在同一机架上的口径8.4米的双筒望远镜,等效口径11.8米,空间分辨本领相当于一台22.8米的单镜面望远镜。
大型双筒望远镜于2005年10月正式投入观测运行,製作價錢連同一些先進的技術高達1億2千萬美元。它位于美国亚利桑那州格雷厄姆山顶之上,由美国、日本和德国联合研究和使用。
第一个望远镜是于2004年在美国亚利桑那州格雷厄姆山顶上架设,第二个望远镜是从2005年开始安装。 大型双筒望远镜由两个紧紧相邻的望远镜构成,简称LBT,它也证明了双镜头比单镜头效果更好。它们可以分离工作,当合并工作时就像一个单一、更大型的望远镜。两个望远镜的镜头直径均为8.4米,它们提供的分辨率比哈勃的分辨率要高出10倍以上,LBT望远镜是天文望远镜中放大率最强的,其次,镜片由硼硅酸盐材料制造,它能在更小的空间内收集更多的光线,让科学家能看到围绕遥远恒星运行的行星。而且这些蜂窝构造的镜片十分光滑,比普通玻璃镜片更轻,精细加工到30毫微米,比一根头发还要细3000倍。天文学家将通过LBT望远镜看到以前没有看到过的天空,并将能够看到在大爆炸之后的少量形成物质,以及同样还能在某些理想条件下看到其它星体周围的行星。


美国口径2.4 米哈勃空间望远镜(Hubble Space Telescope,缩写HST)
天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下
这是哈勃拍到的距离地球大约1.4亿公里小行星碰撞照片
天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下
  哈勃空间望远镜(Hubble Space Telescope,缩写为HST),是以天文学家爱德温·哈勃(Edwin Powell Hubble)为名,在轨道上环绕着地球的望远镜。它的位置在地球的大气层之上,因此获得了地基望远镜所没有的好处-影像不会受到大气湍流的扰动,视相度绝佳又没有大气散射造成的背景光,还能观测会被臭氧层吸收的紫外线。1990年4月25日,由美国航天飞机送上太空轨道的 “哈勃”望远镜长13.3米,直径4.3米,重11.6吨,造价近30亿美元。它以2.8万公里的时速沿太空轨道运行,清晰度是地面天文望远镜的10倍以上。同时,由于没有大气湍流的干扰,它所获得的图像和光谱具有极高的稳定性和可重复性。 在1990年4月哈勃空间望远镜发射升空的数星期后,研究人员发现从哈勃空间望远镜传回来的图片有严重的问题,获得的的最佳图像品质也远低于当初的期望:点源的影像被扩散成超过一弧秒半径的圆。通过对图样缺陷的分析显示,问题来源于主镜的形状被磨错了。虽然这个差异小于光的1/20波长, 镜面与需要的位置只差了微不足道的2微米,但这个差别造成了灾难性的球面像差。这样来自镜面边缘的反射光不能聚集在与中央的反射光相同的焦点上。 1993年,奋进号执行了对哈勃空间望远镜的第一次维修,研究人员设计一个有相同的球面像差,但功效相反的光学系统来抵消错误,相当于配上一副能改正球面像差的眼镜。用来改正球面像差的仪器称为空间望远镜光轴补偿校正光学(COSTAR)。为了给COSTAR在望远镜内提供位置,必须移除其中一件仪器,天文学家的选择是牺牲高速光度计。 哈勃空间望远镜携带的仪器如下:
  广域和行星照相机(WF/PC)
  戈达德高解析摄谱仪(GHRS)
  高速光度计(HSP))
  暗天体照相机(FOC)
  暗天体摄谱仪(FOS)
 1997年2月,发现号在STS-82航次中执行了第二次维修任务。用 空间望远镜摄谱仪(STIS)和近红外线照相机和多目标分光仪(NICMOS)替换掉戈拉德高解析摄谱仪(GHRS)和暗天体摄谱仪(FOS)。修护绝热毯,再提升哈勃的轨道。在维修中出现的意外缩短了仪器的使用年限。安装后吸热器的部分热扩散意料之外地进入光学挡板,这额外增加的热量导致仪器的寿命由原先期望的4.5年缩短为2年1999年12月的STS-103航次中执行。在这次维护中更换了全部的六台陀螺仪,也更换了一个精细导星传感器和计算机,安装一套组装好的电压/温度改善工具(VIK)以防止电池的过热,更换绝热的毯子。新的计算器是能在低温辐射下下运作的英特尔486,可以执行一些过去必须在地面处理的与太空船有关的计算工作。哥伦比亚号在2002年3月的STS-109航次执行,用先进巡天照相机(ACS)替换了暗天体照相机(FOC),更换了新的冷却系统和太阳能板。哈勃的配电系统也被更新了,这是哈勃空间望远镜升空之后,首度能完全的应用所获得的电力。美国东部时间2009年5月11日14点01分,美国“阿特兰蒂斯”号航天飞机从佛罗里达州肯尼迪航天中心发射升空。在此次太空之旅中,机上的7名宇航员通过5次太空行走对哈勃太空望远镜进行了最后一次维护,为其更换了大量设备和辅助仪器,这些更新主要包括:用第三代广域照相机(WFC3)取代WFPC2;安装新的宇宙起源频谱仪(COS)、取回该处的COSTAR光学矫正系统;修复损坏的先进巡天照相机(ACS);修复损坏的空间望远镜摄谱仪(STIS);替换损坏的精细导星传感器(FGS);更换科学仪器指令和数据处理系统(SIC&DH);更换全部的电池模组;更换所有的6个陀螺仪和3组定位传感器(RSU);更换对接环、安装全新的绝热毯(NBOL)、补充制冷剂等等。而这将会是哈勃空间望远镜最后一次的维护任务,会将哈勃空间望远镜的寿命延长至2013年后。届时发射的詹姆斯·韦伯空间望远镜能接续哈勃空间望远镜的天文任务。
天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下




 
3.5米欧洲“远红外线和亚毫米波望远镜”(赫歇尔空间天文台(Herschel)

天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下

      赫歇尔空间天文台是欧洲空间局(ESA)建造的的大型红外空间望远镜,它具有直径3.5米的主镜,焦距是:27米“赫歇尔”宽4米,高7.5米,有三台非常灵敏的探测仪器:成像光谱与测光仪(Spectral and Photometric Imaging Receiver 简称SPIRE)、光电阵列和射谱仪(Photodetector Array Camera and Spectrometer Instrument 简称PACS)、远红外外差接收机(Heterodyne Instrument for the Far Infrared 简称HIFI。中国参与研制的是SPIRE部分。    2009年5月14日发送的欧洲航天局赫歇尔空间天文台,有一面镜子赫歇尔大大超过哈勃,但只有在远红外线观察。 赫歇尔空间天文台是欧洲空间局的空间天文卫星,2009年5月14日在法属圭亚那库鲁航天中心和普郎克巡天者一起由欧洲阿丽亚娜5-ECA型火箭发射升空。赫歇尔空间天文台造价10亿欧元,它是人类有史以来发射的最大的远红外线望远镜,将用于研究星体与星系的形成过程。6月14日,地面任务控制中心发送指令,命令“赫歇尔”打开用于保护敏感仪器免遭污染的舱门,利用光电阵列和射谱仪(PACS)对涡旋星系(亦称M51)进行了探测,揭开了正式使用的帷幕。赫歇尔空间天文台进入距离地球150万公里环绕着L2 拉格朗日点,直径70万公里的利萨如轨道。赫歇尔将在围绕地-日系统的第二拉格郎日点(L2)的轨道上运行。L2严格说已经是行星轨道,属于“深空”范畴,成为包括接替哈勃望远镜的James-Webb空间天文台等多个天文观测空间望远镜的首选轨道。2001年升空探测微波背景辐射各向异性的卫星WMAP也是定位于L2。


美国口径85厘米的斯皮策太空望远镜2003年升空

天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下
 天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下
 斯皮策太空望远镜(Spitzer Space Telescope,缩写为SST)由美国国家航空航天局于2003年8月发射,是人类送入太空的最大的红外望远镜,也是大型轨道天文台计划的最后一台空间望远镜。该望远镜隶属于美国宇航局和加州理工学院。斯皮策太空望远镜是美国宇航局发射的四大太空望远镜之一。斯皮策太空望远镜”是第一台与地球同步运行的太空望远镜,它计划在太空中服务5年,但NASA希望它的工作寿命能够延长。
  它的轨道也非常独特,是躲在地球的后面,与地球保持同样的角速度绕太阳旋转。这个轨道可使望远镜免受太阳的直接照射,等于给望远镜提供了一个天然的冷却源,这样就可以少带一些液氦,不仅减轻了望远镜自身的重量,同时也节省了资金。虽然斯皮策与哈勃都是太空望远镜,但是哈勃以光学观测为主,而斯皮策则以观测天体红外波段为主。所谓红外,说的是望远镜能够探测到目标发出的红外辐射。斯皮策的红外探测灵敏度极高,波长在3微米至180微米之间的红外辐射都能尽收“眼”底。而这个波段因其范围内的辐射抵达地面时会被地球大气层阻挡,一向是地面望远镜的“盲区”。因此斯皮策能探测到宇宙中那些难以感知到的天体,比如一些暗淡的小型恒星。与光学天文观测设备相比,斯皮策的红外之“眼”能够穿透尘埃、气体,看到其背后隐藏的无限奥秘。
斯皮策是最早提议将望远镜送入太空以获取更加清晰宇宙画面的科学家,因此NASA将该红外望远镜命名为“斯皮策太空望远镜”。
斯皮策空间望远镜总长约4.45米,重量为950千克,主镜口径为85厘米,用
制作。除此之外还有3台观测仪器,分别为:
  1、红外阵列相机(IRAC),大小为256×256像素,工作在3.6、4.5、5.8和8微米4个波段。
  2、红外摄谱仪(IRS),由4个模块组成,分别工作在5.3-14微米(低分辨率)、10-19.5微米((高分辨率)、14-40微米(低分辨率)和19-37微米(高分辨率)。
  3、多波段成像光度计(MIPS),工作在远红外波段,由3个探测器阵列组成,大小分别为128×128像素(24微米)、32×32像素(70微米)和2×20像素(160微米)。
  4、为避免望远镜本身发出的红外线干扰,主镜温度冷却到了5.5K。望远镜本身还装有一个保护罩,为的是避免太阳和地球发出的红外线干扰。 

费米伽玛射线空间望远镜
天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下
 
费米太空望远镜,NASA最新的太空望远镜,也就是先前的GLAST,2008年6月发射升空。这台世界上最强大的望远镜是通过高能伽马射线观察宇宙,最初这个天文台被称作“伽马射线广域空间望远镜”(Gamma-ray Large Area Space Telescope),发射前就已经预定在发射后两个月内为这台望远镜重新命名并征集公众和科学家意见进行选择。当这台望远镜建成后开始正常运行时,NASA宣布给它重新命名为费米伽玛射线太空望远镜。以纪念高能物理学的先驱者恩里科·费米(1901-1954)。
费米伽马射线望远镜由美国主导建造,并得到了法国、德国、意大利、日本和瑞典5个国家的政府机构及科研组织的资金和技术支持。它于2008年6月发射升空,设计观测寿命为5年到10年。这台世界上最强大的望远镜是通过高能伽马射线观察宇宙,最初这个天文台被称作“伽马射线广域空间望远镜”(Gamma-ray Large Area Space Telescope),但是当这台望远镜建成后开始正常运行时,人们又根据意大利科学家恩里科·费米的名字给它重新命名。由于有了美国宇航局的费米伽马射线太空望远镜,不久后人们可能会对超大质量黑洞、暗物质和被称作伽马射线爆的神秘爆炸等一些宇宙中最令人费解的现象有更多了解。
伽马射线代表着宇宙中光线的最强能量形式,它通常产生于以很快的速度抛出物质的来源,如巨大的黑洞。短期的伽马射线爆发特别的一点在于它证实了爱因斯坦的一个观点,也就是无线电波,红外线,可见光,X射线和伽马射线在太空中均以相同的速度传播。
根据科学家们建立的理论,时空在比电子还小万亿倍的极小的物理尺度下呈动态的“泡沫”结构。模型预测这种泡沫时空会产生高能的伽马射线,其速度比更低能量的光子还要慢——这项预测也经过了太空望远镜观测的验证。
物理学家们很乐意用一种能涵盖所有基本力的概念来取代爱因斯坦在相对论中表述的引力的观点。有很多设想,但是很难找到方法去验证它们。”
费米观测到GRB 090510事件的时间是5月10日,天文学家推断伽马射线爆发很可能来源于73亿光年外的两颗中子星的碰撞. 特别是有两粒伽马射线光子的能量级相差有上百万倍。然而,在穿越了70亿光年的距离后,这对光子到达费米探测器的时间差不过0.9秒。
观测到的事实排除了一项新的引力理论,这项理论预测能量的强弱取决于光速的改变。
费米发现的这一千个伽马射线源较以往所知的数量多了五倍,其中一些的能量之强已经打破了纪录。例如,GRB 090510伽马射线源以光速的99.99995%的速度抛出物质。之前观测到的能量最强的伽马射线来自GRB 090902B,为334亿电子伏——约为可见光能量的130亿倍。
能量第三的伽马射线源GRB 080916C,其能量足可匹敌9000 颗超新星爆炸。如果你觉得这还不能令人疯狂的话,想象一下,伽马射线爆发还能够产生被称为“鬼粒子”的中微子。 (中微子:核反应和超新星爆发中产生的一种粒子,比原子更基本,质量很小或没有质量,几乎不与物质发生作用;中微子不带电荷,运动速度达到(如果其质量为零)或接近光速(如果其具有质量)。)


钱德拉X射线太空望远镜

天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下
 
钱德拉X射线天文台(Chandra X-ray Observatory,缩写为CXO)是美国宇航局于1999年发射的一颗X射线天文卫星,是大型轨道天文台计划的第三颗卫星,目的是观测天体的X射线辐射。其特点是兼具极高的空间分辨率和谱分辨率,被认为是X射线天文学上具有里程碑意义的空间望远镜,标志着X射线天文学从测光时代进入了光谱时代。
钱德拉X射线天文台的制造耗资15.5亿美元,原名为先进X射线天文设备(AXAF),1998年,为纪念美籍印度裔天体物理家钱德拉塞卡而更名。1999年7月23日,钱德拉X射线天文台由哥伦比亚号航天飞机搭载升空,运行在一条椭圆轨道上,近地点为1万公里,远地点为14万公里,轨道周期为64小时。卫星在轨期间由史密松森天体物理台负责操控和运作。
钱德拉X射线天文台总重约4.8吨,主镜为四台套筒式掠射望远镜,每台口径1.2米,焦距10米,接受面积0.04平方米,采用沃尔特型光路。终端设备有:

  高新CCD成像频谱仪(ACIS),由10台CCD组成,观测能段为0.2-10 keV。

  高分辨率照相机(HRC),主要部件是2台微通道板探测器,观测能段为0.1-10 keV,时间分辨率达到0.016秒。

  高能透射光栅摄谱仪(HETGS),观测能段为0.4 - 10 keV,谱分辨率为60-1000。

  低能透射光栅摄谱仪(LETGS),观测能段为0.09 - 3 keV,谱分辨率为40-2000,两台摄谱仪都能够与高新CCD成像摄谱仪和高分辨率相机联合工作。



美国6.5米的詹姆斯.韦伯红外新一代太空望远镜 JWST(2015年升空)
天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下

 詹姆斯·韦伯空间望远镜James Webb Space Telescope,缩写JWST)是计划中的红外线太空望远镜。形式是屈光式、牛顿式,口径是6.5米,聚光面积约25平方米,有效焦点距离是131.4米(431英尺)。作为将于2010年结束观测活动的哈勃太空望远镜的后续机,原计划于2011年发射升空。但因哈勃太空望远镜的修补等延命措施的效果,故发射改期为2013年。系欧洲空间局ESA)和美国宇航局NASA)的共用计划,放置于太阳地球第二拉格朗日点。不像哈勃空间望远镜那样是围绕地球上空旋转,而是飘荡在从地球背向太阳的后面150万千米的空间。此项目曾经称为“新一代太空望远镜”(Next Generation Space Telescope),2002年以美国宇航局第二任局长詹姆斯·韦伯的名字命名。1961年至1968年詹姆斯·韦伯担任局长期间曾领导阿波罗计划等一系列美国重要的空间探测项目。

望远镜的地面控制和协调机构是位于约翰霍普金斯大学空间望远镜研究所(STScI)。

詹姆斯.韦伯太空望远镜主镜镜片采用了凯克望远镜的制作技术詹姆斯.韦伯太空望远镜隶属于美国、欧洲和加拿大宇航局,它将接过在太空中服役了二十年即将退役的哈勃太空望远镜的接力棒。但与哈勃不同的是,詹姆斯.韦伯太空望远镜主要用于红外线观测,据美国宇航局官方信息,詹姆斯.韦伯太空望远镜的聚光能力将是其前任的七倍![詹姆斯.韦伯是1961年至1968年间,阿波罗计划发展黄金时期美国宇航局的掌门人。除了载人航天事业,他还推动了先锋号和税收号无人飞船计划,也是这两艘飞船第一次为人类带回了其它星球的近距离拍摄照片。



六国联合制作的口径8米的双子望远镜(GEMINI)

天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下

双子望远镜是以美国为主的一项国际设备(其中,美国占50%,英国占25%,加拿大占15%,智利占5%,阿根廷占2.5%,巴西占2.5%),由美国大学天文联盟(AURA)负责实施。它由两个8米望远镜组成,一个放在北半球,一个放在南半球,以进行全天系统观测。其主镜采用主动光学控制,副镜作倾斜镜快速改正,还将通过自适应光学系统使红外区接近衍射极限。 该工程于1993年9月开始启动,第一台在1998年7月在夏威夷开光,第二台于2000年9月在智利赛拉帕琼台址开光,整个系统预计在2001年验收后正式投入使用。


欧洲口径42米的“欧洲特大天文望远镜”(简称为E-ELT)

天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下

欧洲的科学家近日决定,在智利海拔3060米的阿塔卡马荒漠高原上建一个世界最大的望远镜,这架望远镜的直径将达到42米。阿塔卡马荒漠高原由于其极端干旱和幽暗的环境,特别适合进行天体观测。E-ELT望远镜:其主镜的直径达42米,重5.5吨。按计划,望远镜的修建工作将会于2011年开始,2018年这个被命名为“欧洲特大天文望远镜”(简称为E-ELT)的大家伙就可以投入使用了。站在阿塔卡马荒漠高原上仰望星空,这里是世界上最干燥的地区之一,因此也是太空观测的绝佳地点这台E-ELT望远镜既可以用作普通可视观测,还可以被用作红外线观测。科学家们坚信,这架望远镜将会像400年前的伽利略望远镜一样,给人们对于宇宙的认识带来革命性的影响。他们希望借助这架望远镜研究行星的诞生以及外太空是否存在外星人  .                     E-ELT官方网站


100米口徑的絕大望遠鏡(Overwhelming Large Telescope,簡稱OWL)

天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下
100米口径的绝大望远镜(主镜将由3,048块1.6米的低膨胀微晶玻璃镜坯组成。25.6米的附镜由216块1.6米的镜坯组成。另外还有两个8米的矫正镜,其次,还配有4米和2.35米的快速自适应矫正镜。光线收集区达到6,000平方米。


液体镜面望远镜

 天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下

液体镜面望远镜是利用旋转使液体形成抛物面形状,以此作为主镜进行天文观测的望远镜。水银是在常温下唯一呈液态的金属,具有良好的反光性,是建造液体望远镜的理想材料。其特点是成本相对低廉,但是只能观测天顶附近的天体,无法对目标进行跟踪。液体镜面望远镜的概念最初是由发明反射式望远镜的英国著名物理学牛顿提出的。1850年,意大利 天文学家欧内斯特·卡波西建议,将盛有水银的旋转圆盘作为望远镜的主镜。然而19世纪到20世纪初期美国进行了一些列实验,但其粗糙的轴承导致镜子出现振动,由于液体不能倾斜,无法跟踪在天空中穿越的天体,结果不甚理想。 1993年,加拿大不列颠哥伦比亚大学的保尔·希克森(Paul Hickson)等人建造了一台口径为2.7米(106英寸)的旋转水银面望远镜,获得了与其相同口径的传统光学望远镜差不多的像质。1996年,他又为美国宇航局位于新墨西哥州的轨道碎片天文台建造了一台相同口径的液体望远镜,用于监视人造卫星轨道上的空间垃圾。

世界上第一架液体望远镜是在20世纪50年代初,由苏联物理学家乌德用一盆水银布制成的。经过不断改进探索,加拿大科学家阿曼罗·博拉在80年代初制造出了第一架可供天文观测用的液体望远镜,镜头直径为45厘米。后来,博拉又用250千克水银制成了两台直径1米、一台直径1.6米的望远镜,并在水银面上加了一层特殊的透明树脂,既解决了外界因素对水银面的干扰,又避免了水银蒸发从而危害人体健康的问题。

1987年,一批加拿大的天文学家终于制造出一架口径为1.5米的水银液体望远镜。制作水银反射式望远镜特别简单,水银反射式望远镜的凹面用45秒的时间就可以成形。技术人员先把水银注入一个抛物面形的盘子中,使其覆盖盘子的大部分表面。然后旋转盘子,使水银在离心力的作用下散开,形成一层1~2毫米厚的抛物面薄膜。由于水银有较大的表面张力,制作完成的水银表面上有时会出一些小孔。当出现这种情况时,可以重复操作一次。一般的操作人员经过几天的实际练习,都能“旋转”出完全没有小孔的光洁如镜的水银薄膜凹面镜。这种水银反射式望远镜的价格比玻璃反射式望远镜便宜得多。目前,加拿大的天文学家正在筹建口径为5~15米的巨型水银反射式望远镜。他们的长远目标是建造口径为30米的大型水银反射式望远镜,以便观测更远处的天体。

天文学家下一步的目标之一就是要制造口径为20~100米的超大型反射式望远镜,而用玻璃制造这样大的单镜面反射式望远镜几乎是不可能的。但是,由于水银反射式望远镜具有成本低和重量轻的特点,利用水银则完全可能制造出超大口径的反射式望远镜。一些天文学家正在制作口径为12米的水银反射式望远镜,然后用18台这种水银反射式望远镜组成一个望远镜阵列,这个阵列就相当于一架口径为50米的大型反射式望远镜。 1994年,不列颠哥伦比亚大学开始建造一台口径为6米的旋转水银面望远镜——大型天顶望远镜(LZT),并于2003年建成,其空间分辨率达到了1.4角秒。制作水银反射式望远镜特别简单,水银反射式望远镜的凹面用45秒的时间就可以成形。技术人员先把水银注入一个抛物面形的盘子中,使其覆盖盘子的大部分表面。然后旋转盘子,使水银在离心力的作用下散开,形成一层1~2毫米厚的抛物面薄膜。 由于水银有较大的表面张力,制作完成的水银表面上有时会出一些小孔。当出现这种情况时,可以重复操作一次。一般的操作人员经过几天的实际练习,都能“旋转”出完全没有小孔的光洁如镜的水银薄膜凹面镜。 这种水银反射式望远镜的价格比玻璃反射式望远镜便宜得多。水银反射式望远镜的最大弱点是只能垂直观测上方的一小块天空,不能倾斜,否则水银就会溢出,因此观测的天空区域狭窄,就像“坐井观天”。后来,天文学家又制造出了可以旋转的水银反射式望远镜,这样不仅能观测正上方非常狭小的天空,而且在天体经过水银反射式望远镜上方时望远镜还可以通过旋转跟踪天体半小时。对水银反射式望远镜而言,这是一个不小的进展。现在,天文学家甚至能通过改变水银盘的旋转速度,改变水银反射式望远镜的焦距。 水银反射式望远镜的另外一个缺点就是会挥发出有毒的水银蒸气。在镜面开始形成时,水银蒸气量较大,操作人员应戴上防护面罩。但几小时后,在表面形成一层氧化膜,水银的蒸发量就会大大减少。 水银反射式望远镜还有一个缺点是怕振动和风吹。由于水银形成的是凹面,望远镜微小的振动都会影响其凹面的精度,因此,水银反射式望远镜需要安装在混凝土底座上,并和周围的建筑物隔离。

中国北京口径4米的大天区多目标光纤光谱望远镜(LAMOST

天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下

 这是我国兴建的一架有效通光口径为4米、焦距为20米、视场达20平方度的中星仪式的反射施密特望远镜。它的技术特色是:1. 把主动光学技术应用在反射施密特系统,在跟踪天体运动中作实时球差改正,实现大口径和大视场兼备的功能。
  2. 球面主镜和反射镜均采用拼接技术。
  3. 多目标光纤(可达4000根,一般望远镜只有600根)的光谱技术将是一个重要突破。

       LAMOST把普测的星系极限星等推到20.5m,比SDSS计划高2等左右,实现107个星系的光谱普测,把观测目标的数量提高1个量级。我国建造的这架反射施密特望远镜——大天区面积多目标光纤光谱天文望远镜(Large Sky Area Multi-Object Fiber Spectroscopy Telescope,简称为LAMOST)坐落于中国科学院北京天文台兴隆观测站。它采用了球面主镜和反射镜均采用拼接技术。LAMOST是一架视场为5度横卧于南北方向的中星仪式的主动反射施密特望远镜,它的光学系统包括:5.72 米×4.4米的反射施密特改正镜MA(由24块六角形平面子镜拼接而成),6.67米×6.05米的球面主镜MB(由37块球面子镜拼接而成)和焦面三个部分。LAMOST望远镜最突出的特点是大口径(4米)兼大视场(5度),以及4000根光纤组成的超大规模光谱观测系统,与国际上同类型的巡天项目相比,观测效率有极大的飞跃。

中国50厘米的全自动南极巡天望远镜

天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下
  南极巡天望远镜是中国自主研发的首台全自动无人值守望远镜,2011年10月14日,“南极巡天望远镜”在 紫金山天文台盱眙观测站调试成功。2011年11月3日跟随中国第28次南极科考队奔赴南极,执行太阳系外行星、超新星等天文观测任务。通过南极巡天望远镜的观测,可帮助人类实现研究银河系结构、近邻星系的距离等科学目标。[南极巡天望远镜,直径68厘米,有效观测口径50厘米,分辨率为1个角秒,装备有世界 上最大的单片电荷耦合器件(CCD),可一次观测9个太阳大小的天区,24小时即可覆盖整个天空,观测数据现场储存,部分实时传回国内。 南极巡天望远镜主要是搜寻银河系外的超新星爆发事件,努力寻找一些亮度瞬间变化的天体(有可能变化幅度不会很大),例如微引力透镜效应,系外行星系统等。此外,还将搜寻各类变源,包括活动星系核、银河系内的各类变星等。通过南极巡天望远镜的观测,可帮助实现研究银河系结构、近邻星系的距离等科学目标.。
中科院紫金山天文台1米近地天体望远镜
天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下
 中国科学院紫金山天文台研制的4k×4kCCD探测系统在盱眙观测站1米/1.2米施密特型近地天体望远镜,在曝光1秒的CCD图像上,可清楚地辨认出18等星, 曝光4秒的图像上可辨认出19.3等星;曝光20秒的照片,经与美国帕洛玛星图和海军天文台的USNO-B1.0星表相比对,可找出的暗星其蓝星等达21.2等,估计极限星等在21.5等左右。 建造1米近地天体探测望远镜,目的是为了观测发现对地球构成潜在危险的近地天体。望远镜采用施密特型光学系统,改正镜口径1.04米,球面反射主镜1.2米,焦距1.8米,具有大视场、强光力的特点。迄今为止,口径一米以上的该类望远镜全世界只有六台,这是因为此类望远镜的改正镜研磨难度相当大。2003年6月, 近地天体探测望远镜的改正镜在南京天仪中心研制完成,经测试表明质量达到设计要求,光学系统像仅为0.005mm(相当于角精度0.″57),从而保证了该望远镜具有优质的成像质量。该望远镜在很短的曝光时间内就能拍摄到如此暗弱的星像,主要是因为配置了4k×4k高灵敏度CCD探测系统。紫台和国外合作研制的CCD系统,选用了高量子效率、低噪音的4096×4096 CCD芯片,采用冷冻机冷却技术(工作温度-103.4℃),并具有漂移扫描功能,为目前国内灵敏度最高的大面阵探测系统,装备在1米望远镜上,拍摄视场可达2°×2°
中国目前最大的云南丽江高美古天文台的2.4米望远镜
天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下
 安装在丽江天文工作站的2.4米望远镜由英国TTL公司制造,高8米重40馀吨,它的口径为2.4米,这台我国目前最大的天文望远镜是一台地平式望远镜,它的终端包括6K×6K的拼接CCD相机,这样的配置使拍摄出的天体图像更为清晰,是东亚地区最大口径的通用光学天文望远镜之一。由于采用了若干新技术,其综合性能在同级望远镜中处于国际中上水平。投入使用后每年能容纳数十项具有先进水平的天体物理课题开展观测和研究工作,促进我国天文学研究与国际水平靠近。全自动的操作系统是最大的特点。由于控制系统能够支持远程操作和自动操作,只要天文学家预定好观测计划,它就会自动执行,这改变了以往科学家非得坚守在望远镜旁才能进行观测的工作模式,大大提高望远镜的工作效率。从1992年实地考察到1998年验收合格,天文学专家们最终决定让2.4米天文光学望远镜在丽江高美古安家,历经了6年时间。高美古位于丽江市区东南面,这片海拔3200米的宁静高原,没有缭乱的灯光和沙尘,空气透明,每年平均有254天晴夜。它黯蓝色的天空引起了国内外许多天文学家的极大兴趣,特别是夜晚满天的繁星、清晰的银河,让很多天文学家十分激动,他们感叹:「干了一辈子天文,从未见过这麽好的夜空,这麽好的天文观测条件。

 中国云南天文台的一米RCC反射式望远镜

天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下
 一米RCC反射式望远镜坐落于中国科学院光学天文联合实验室昆明基地海拔高度2000米位于中国科学院云南天文台内。是我国南方晴日数最高的地区。每年平均天文可观测夜可达~220天,其中测光夜可达100-120天。可观测时段主要集中于每年的冬春两季。昆明地处中国南方,且海拔较高,因此气候冬暖夏凉,昆明基地望远镜观测地点有着较好的视宁度, 望远镜简介东德Zeiss厂生产的< XMLNAMESPACE PREFIX ="ST1" />一米望远镜于1979年5月安装完毕,交付使用。光学系统为RCC系统,通用性比较强,  望远镜安装在英国式EM2支架上。云台的科技人员已完成对望远镜的计算机控制部分的彻底改造。口径:1016 mm,焦距13.3 m ,副镜:324 mm,和19.4 mm在1987年我国自己设计制造的1.2米红外望远镜问世前,该一米望远镜保持了八年为全国第一大光学望远镜。即使在1.56米、2.16米望远镜投入使用后,它仍然是我国天体物理界的有力实测武器。该望远镜的卡焦焦点配有照相机和通用天文光栅摄谱仪。Coude系统则配有先进的折轴分光仪系统。三个照相机的口径分别为490mm、728mm和1080mm,焦长分别为450mm、875mm和1900mm。不同的级次和不同的照相机组合,可得到色散为2.8埃/mm、4.1埃/mm、6.0埃/mm、9.0埃/mm、11.7埃/mm和17.6埃/mm。从各种性能来看,它是当时比较现代化的折轴分光仪。对高色散分光工作,它是必不可少的利器。一米望远镜和折轴分光仪,在投入使用后即成为全国天文界的公用设备,成立了望远镜时间分配委员会,审理来自全国的申请,平均每年安排使用的时间大约是申请时间的三分之一,旱季的观测时间更难满足要求。
北京2.16米光学天文望远镜

天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下

 北京天文台兴隆观测站的2.16米光学天文望远镜1972年开始研制,1989年正式投入使用,并荣获国家科技进步一等奖。这台望远镜是由北京天文台、南京天文仪器厂、中国科学院自动化研究所等单位历时15年联合攻关协作研制成功的,堪称我国自力更生研制大型精密设备的标志。 它包括光学、机械、驱动、自控、星光探测装置、观测室等部分。它口径2.16米,身高6米,自重90余吨,望远镜的主镜为一个直径2.2米、厚30厘米、重3吨的光学玻璃研磨而成,巨大的镜面口径,聚光力极强,因而可以观测到极暗的星体,最暗可达25等星,相当于可以看到两万公里外一根火柴燃烧的亮光。望远镜的转动轴包括极轴和赤纬轴,镜筒可指向天空任一方向。驱动部分采用自动化装置,使望远镜精确地跟踪星体的东升西落,并采用先进的探测设备接受和分析星光。工程总投资:3000万元以上工程期限:1972年——1989年主镜口径: 216cm 。

 上海天文台(佘山) 1.56米光学望远镜

天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下
天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下
     1.56米光学望远镜位于上海市西南松江区境内的佘山,海拔高度 97 m。其口径为156厘米,焦距为1560厘米,目前国内第二大光学望远镜,也是中科院光学天文联合开放实验室的主要观测设备之一。望远镜采用RC光学系统和卡塞格林焦点系统,配备CCD照相机做成象和光谱工作。该望远镜由上海天文台自行设计并于1987年完成,1989年起用。该望远镜主要探测设备是一台美国Photometrics公司进口的CCD照相机,芯片大小为 1024 &#180; 1024象素,视场为4'17 〃,分辨率为0.25/象素,并配有B、V、R、I 宽带滤光片。需要大视场的天文观测工作时,配合缩焦器可将视场扩大至13'。此外,该望远镜还配有卡焦摄谱仪,可进行分光观测。
佘山基地的大气视宁度较好,十分适合于天体的成象观测。在海尔-波普彗星观测期间,该望远镜即负责彗星近核区域的高分辨率观测,得到了高质量的观测资料。基地在气象条件上可与北京和云南的观测站互补,夏季尤为明显。例如1994年彗木相撞,在国内其它天文台都受阴天影响时,1.56m望远镜获得了国内最完备的光学观测资料。
1.56米望远镜虽然最早设计为天体测量用望远镜,但配合CCD和摄谱仪等终端设备,实际观测课题已扩大到天体物理领域。当前的研究领域主要包括Blazar 光变的研究;活动星系核的国际联测;星团的运动学和动力学研究;球状星团小变幅新类型变星;类星体短时标光变的探测;土星和天王星卫星定位观测;射电源光学对应体的精确测定;激变变星的观测;以及太阳系小天体的观测,如彗星等。
佘山天文台坐落在上海松江的佘山之巅,前身是有百年历史的中科院上海天文台佘山工作站。佘山天文台是我国最早的天文台,也是我国最早的天文研究中心之一。

经纬台式大型望远镜先驱-前苏联SAO天文台BAT-6望远镜
天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下
天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下
镜身上的CCCP(“苏维埃社会主义共和国联盟”俄文缩写)和ЛОМО(“列宁格勒光学仪器厂”的俄文简写,英文为LOMO)
天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下
 
 经纬台式大型望远镜(俄语::Большой Телескоп Альт-азимутальный,英文:Big Telescope Alt azimuthal,BTA)是由苏联建造的大型望远镜,主镜直径6米,自从其建成之后至1992年凯克望远镜完工,一度是世界上口径最大的光学望远镜。直至今日,它仍然是欧洲大陆上口径最大的光学望远镜。6米望远镜大约由25000个大小部件组成,总重量为850吨,其高度为42米,镜面的支撑钢架重300吨,望远镜的观测室高达44米,由金属制囘作,重量约达1000吨。为建造这一庞然大物,共计花去了16年在其建设过程中创造了许多大型望远镜设计、建造的先例。然而,由于其选址和望远镜的制造质量问题,BTA的实际成像能力一直受到西方天文学家的质疑。1950年,苏联科学院决定建设一台新的大型望远镜以超过5米的海尔望远镜。这台新望远镜的直径被确定为6米,这差不多是单面固体望远镜的最大极限。玻璃毛坯的浇铸准备和多次试烧就花了4年多的时间。再用金刚刀切去28吨余料,一个重42吨、厚65厘米的主镜才基本形成,单就做金刚刀就用了3公斤的钻石,之后将基本形成的主镜放在有3层隔墙的恒温车里研磨加工,其精度是百万分之一厘米。最后再用特大型镀膜机镀膜。同时,总体的建设安装都非常的复杂。俄罗斯科学家为6米望远镜的建设做出了智慧、艰苦的贡献。
在其之后建设的口径更大的望远镜,都采用了多面镜片拼接的工艺。该望远镜的镜片由列宁格勒光学机械联合体,也就是著名的LOMO制造。主镜直径6米,焦距为26米,结构质量800吨,高度约为42米。用于支撑的支架和容纳望远镜的观测室,重量也分别达到了300吨和1000吨。与之前的大型望远镜相比,经纬台式大型望远镜采用了许多新技术。首先,正如其名字所示,它使用的是经纬台式架台,与赤道仪相比结构简单、造价低。但定位复杂,需要依靠计算机装置辅助。它还使用了水平式焦点结构,这种结构使得主镜所聚焦的成像被反射到镜筒侧面。这样光学胶片或是CCD装置可以装置在主镜外,利于减轻总体的重量。换句话说,经纬台在追踪星体时,其控制系统必须有足够的记忆容量,在各星体不同的经纬度时,给予不同的驱动指令。在那电脑体积大如厂房的五、六十年代,有谁敢冒失败的风险,来进行这世界第一的望远镜建造计划?前苏联就不计成本地,为BTA-6米镜发展了一套编号M222的计算机控制系统,记忆容量为16,000byte,在操控中实际使用量为4,000byte。因此,BTA-6米镜证明了经纬台大望远镜的可行性。 danshi 但是作为先驱,仍然有先驱的献身精神.虽然其口径非常巨大,但是实际成像能力和科研能力却并不高。首先,巨大的单一镜片非常沉重。受自身重量和热涨冷缩的影响,镜片很容易发生变形。实际上,1975年所安装的主镜在使用后不久就发生了破裂,结果导致其成像能力只有设计值的6成左右。1978年苏联又用了一面新的派热克斯玻璃替换了它。其选址也并不利于天文观测,该天文台所在地常有大风,温度变化也极为不稳定。近年来,该望远镜也更换了膨胀率更低的玻璃并加装了CCD成像系统。
 虽然BTA6米镜在天文学研究上,受到台址自然环境的影响(温差、强风)与经济环境的限制,而未能有重大的发现,但是仍无损其大望远镜「先知」的地位。
智利拉西拉天文台3 .6米天文望远镜
天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下
天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下
  欧洲南天天文台(ESO)所属的 3.6米望远镜是在智利拉西拉天文台里,由ESO从1971年开始操作的一架光学反射望远镜,它的净口径大约是3.6米 (140英吋),面积为8.6米2。它在1999年进行了全面的改进,并在2004年更换了次镜。当它在1970年代末期完成时,它是当时世界上最大的光学望远镜,并且支援了许多先进的光学和科学成就。在1980年代,它提出了天文社群中第一个自适应光学系统:ADONIS: ADaptive Optics Near Infrared System。迄2009年,这架望远镜发现75颗可能的系外行星

拉西拉天文台的3.6米新技术望远镜( NTT )
天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下
 新技术望远镜NTT是座落于智利拉西拉天文台,率先使用主动光学的经纬仪架台3.58米里奇-克莱琴望远镜。这架望远镜和她的储存模组进行了革命性的设计以获得最佳的影像品质。NTT属于欧洲南天天文台,于1989年开光。主镜是灵活的,形状可以在观测期间用促动器主动调整,以获得最佳的影像品质。次镜的位置也可以在三个方向上灵敏的控制。这种技术是ESO发展出来的,就是所谓的主动光学,现在已经应用在所有主要的现代望远镜上,像是帕瑞纳山的甚大望远镜和未来的欧洲极大望远镜。NTT八角型的储存模组设计是另一项技术上的突破,使望远镜室相对较小,并且有襟翼的通风系统使流过镜像的气流是平稳的,可以减少湍流并使影像更清晰
美国2米的麦克梅斯-皮尔斯太阳望远镜
天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下
 麦克梅斯-皮尔斯太阳望远镜(McMath-Pierce Solar Telescope)位于美国亚利桑那州基特峰,隶属于美国国家太阳天文台NSO),口径为2米,光路长780英尺(约240米),焦比为f/54。镜筒冷却水有1.9万加仑(约7.2万升),是世界上最大的太阳望远镜。麦克梅斯-皮尔斯太阳望远镜于1962年11月2日落成,美国总统约翰·肯尼迪曾亲自发来书面贺词。

WASP(广域行星搜索)望远镜天文望远镜集锦 - 大地在我脚下 - 大地还在我的脚下

  架设在大西洋加拿利群岛拉斯帕尔马斯的WASP望远镜是属于天文学组织国际联合会的,它最近开始安装上由3台新摄影机组成的第一台摄影机,借助于它们将寻找我们太阳系外的新行星。世界各国天文学家在比较近的恒星周围发现了近百颗行星,在WASP望远镜上启用新摄影机之后计划寻找千颗以上的行星,这些行星的大小可与木星相比拟。例如,编号为HD 23079的恒星拥有一颗比木星重3倍的行星,它围绕自己的恒星旋转,运行轨道几乎是圆形,其半径约为太阳与火星之间的距离,围绕恒星旋转一圈的时间为628个地球日。WASP望远镜的3台新摄影机每分钟将以高精度测量约100万颗恒星的亮度,在任何一颗恒星周围可能存在的行星将显示出周期性亮度变化,这些恒星将会得到更详细的研究。新型摄影机的灵敏度非常高,它们甚至能记录到飞近恒星的小行星。每台新摄影机将在“机器人”控制下工作,人的干预或参与可以减少到最低限度。按计划,第一台摄影机在无云的夜间将可以获得30千兆比特的信息,而在安装全部3台摄影机之后,信息量将增至16太(1012)比特。因此,天文学家必须使计算机多工作,以便处理这样大量的信息 uperWASP包含两个机器人天文台,整年都连续运作,。一,SuperWASP-North位于拉帕尔玛岛在艾萨克·牛顿群望远镜(ing)第二,SuperWASP-South位于在该网站的南非天文台(SAAO),。这个天文台每包含八个广角摄像头,同时监视天空为行星凌日事件,八个广角相机允许我们监视数百万的星星同时使我们能够检测出罕见的事件。

  评论这张
 
阅读(1745)| 评论(1)
推荐 转载

历史上的今天

在LOFTER的更多文章

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2018